With the ongoing explosive growth of AI/ML models and systems, Krishnaram explores some of the ethical, legal, and technical challenges that researchers and practitioners alike encounter. He discusses the need for adopting a fairness and privacy by design approach when developing AI/ML models and systems for different consumer and enterprise applications. Then she focuses on the application of fairness-aware machine learning and privacy-preserving data-mining techniques in practice by presenting case studies spanning different LinkedIn applications, such as fairness-aware talent search ranking, privacy-preserving analytics, and LinkedIn salary privacy and security design.
- WATCH NOW
- 2024 EVENTS
- PAST EVENTS
- 2023
- 2022
- February
- RTC @Scale 2022
- March
- Systems @Scale Spring 2022
- April
- Product @Scale Spring 2022
- May
- Data @Scale Spring 2022
- June
- Systems @Scale Summer 2022
- Networking @Scale Summer 2022
- August
- Reliability @Scale Summer 2022
- September
- AI @Scale 2022
- November
- Networking @Scale Fall 2022
- Video @Scale Fall 2022
- December
- Systems @Scale Winter 2022
- 2021
- 2020
- 2019
- 2018
- 2017
- 2016
- 2015
- EXPLORE TOPICS
- Blog & Video Archive
- Speaker Submissions
- About @Scale