Autonomous vehicles generate a lot of raw (unlabeled) data every minute. But only a small fraction of that data can be labeled manually. Ashesh focuses on how we leverage unlabeled data for tasks on perception and prediction in a self-supervised manner. He touches on a few unique ways to achieve this goal in the AV land, including cross-modal self-supervised learning, in which one modality can serve as a learning signal for another modality without the need for labeling. Another approach he touches on is using outputs from large-scale optimization as a learning signal to train neural networks, which is done by mimicking their outputs but running in real-time on the AV. Ashesh further explores how we can leverage the Lyft fleet to oversample the long tail events and, hence, learn the long tail.
- WATCH NOW
- 2024 EVENTS
- PAST EVENTS
- 2023
- 2022
- February
- RTC @Scale 2022
- March
- Systems @Scale Spring 2022
- April
- Product @Scale Spring 2022
- May
- Data @Scale Spring 2022
- June
- Systems @Scale Summer 2022
- Networking @Scale Summer 2022
- August
- Reliability @Scale Summer 2022
- September
- AI @Scale 2022
- November
- Networking @Scale Fall 2022
- Video @Scale Fall 2022
- December
- Systems @Scale Winter 2022
- 2021
- 2020
- 2019
- 2018
- 2017
- 2016
- 2015
- Blog & Video Archive
- Speaker Submissions